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Two theoretical formulae for the number of Kekulé structures in general capped zig-
zag nanotubes are established: one of which is by using the techniques of the trans-
fer matrices, the other involves the eigenvalues of the transfer matrix which reveals the
asymptotic behaviour of this index. In effective, according to the symmetric aspect of
the tubule, the order of the transfer matrix could be notably decreased. As an appli-
cation, the closed expressions for four types are given out and the relevant numerical
results for those of length up to 50 are listed.
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1. Introduction

Kekulé structures (perfect matchings) in benzenoid hydrocarbons was sys-
tematically studied in the previous work of chemists (for an example, see Cyvin
and Gutman [1] for details). The number of Kekulé structures in benzenoid
hydrocarbons is both theoretically and practically an interesting parameter [2].
Various techniques and methods have been developed to calculate this index. For
physicists, the enumeration of perfect matchings in some cases are equivalent to
the dimer problem of the rectangle lattice graph on the plane, which had been
solved by Kasteleyn [3].

Following the experimental discovery of carbon nanotube [4–6] and the the-
oretical prediction of the existence of boron-nitride nanotubes, the index Kekulé
count of nanotubes has become interesting objects of research.

Theoretically to say, an open-ended nanotube is mathematically a hexagonal
system embedded in a cylinder and a capped nanotube consists of an open-
ended nanotube capped at its ends by two hemispherical (trivalent and two-
connected polygonal system) caps. For examples, the caps in a capped carbon
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nanotube are composed of hexagons and (12) pentagons while, in a Boron-
Nitride nanotube, the caps are composed of hexagons and (6) squares.

Sachs, Hansen and Zheng have done some significant works on Kekulé
counts in the open-ended nanotubes and gave out, in particular, the closed for-
mula for a special capped carbon fullerene tubule which consists of an untwisted
(or called zigzag in some other literatures) tubule capped at its ends by two
halves of a pentagon-dodecahedron [7]. For the hexagonal system embedding on
the torus, Klein bottle and the capped near-benzenoid nanotube (or called the
cylindrical near-benzenoid graph in their article), Klein and Zhu established the
analytical formulae, in terms of transfer matrix and self-avoiding walk system,
to this index. In [8], Lin and Tang set up a recurrence algorithm to the Kekulé
count for two types of the boron-nitride zigzag nanotubes and gave out the
numerical results for those of length up to 8. From their numerical results, Lin
et al. also observed that the Kekulé counts increase exponentially with respect to
the length of the tubule. In [9], the present authors dealt with the capped arm-
chair nanotubes.

In this paper, we focus our attention on the Kekulé counts for the
(single-wall) capped zigzag nanotubes. Two theoretical formulae for general
capped zigzag nanotubes are established: one of which is by using the techniques
of transfer matrices, the other involves the eigenvalues of the transfer matrices.
The study shows that the maximum eigenvalue of the transfer matrix reveals the
asymptotic behaviour of the Kekulé counts: the number of Kekulé structures in
capped zigzag nanotubes increase exponentially with respect to the length of the
tubule. This yields a theoretical proof to the observation of Lin et al. mentioned
above. In effective, according to the symmetric aspect of the nanotube, the order
of the transfer matrix could be notably decreased. As an application, the closed
expressions for four types are given out and the relevant numerical results for
those of length up to 50 are listed.

2. Transfer matrix

An open-ended (single-wall) nanotube, or tubule for short, is a part of some
regular hexagonal tessellation of a cylinder. Two types of such tubules, namely
the ‘zigzag’ (or ‘untwisted’) and ‘armchair’ (or ‘fully twisted’) in nanotube
terminology received much attention in previous literatures. In fact, zigzag and
armchair are two extreme patterns of the twisted tubules (see [7,10] for details).
The zigzag tubule [7,8,10] is constructed by starting from a suitable rectangu-
lar section cut from the honeycomb lattice as shown in figure 1(a) in which two
edges of each hexagon are parallel to the axis y: each dangling bond at the left-
side (x = 0) is identified to the corresponding (with equal-y axis) dangling bond
at the right-side (x = w). The number h (h � 1) and w measure the length and
the circumference of the tubule (in Figure 1(a), we have h = 13 and w = 6),
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0
11
12

321 4 5 6o

2
3

4
5
6
7
8

0 1 2 3 4 5 0

0 1 2 3 4 5 0

10 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

h

3

(a) (b) (c)

Figure 1. (a) A rectangular section cut from the honeycomb lattice; (b) a capped zigzag nanotube;
(c). draw a semi-capped tubule and a cap in a planar mode.

respectively. In the following, the layers of a tubule of length h are always num-
bered by 1, 2, . . . , h, in an order from the top to the bottom, respectively.

The capped zigzag tubule [8,10] Th(C, C ′) is constructed by adding two suit-
able caps (i.e., the trivalent and two-connected polygonal system with some dan-
gling bonds on its boundary) C and C ′ to the upper and lower open ends of
an open-ended zigzag tubule of length h, respectively (i.e., identifying the corre-
sponding dangling bonds of the open tubule with that of the two caps C and
C ′). To be convenient, we will call a tubule with exactly one end capped with a
cap C a semi-capped tubule and denote it by Th(C). Therefore, a capped tubule
Th(C, C ′) could be considered to be constructed by joining a cap C ′ to the semi-
capped tubule Th(C). One can see that the structure of a capped tubule Th(C, C ′)
is determined uniquely by the way how to join C ′ with Th(C). Some exam-
ples of caps are shown in figure 2 and a capped tubule Th(C4, C4) is shown in
Figure 1(b). For the further information of caps, we may refer to [8,11,12]. Let
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Figure 2. Some examples of caps.
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us draw a semi-capped tubule Th(C) and a cap C ′ in a planar mode as shown in
figure 1(c).

In the following, when we speak of the bonds in a layer, we always mean
the vertical bonds. For a Kekulé structure M of Th(C, C ′), a bond e is said to
be a double bond if e ∈ M. It could be observed that there is exactly one dou-
ble bond between two successive double bonds of the previous layer. So for any
Kekulé structure M, the number of double bonds in each layer are the same. Let
the bonds in each layer be numbered by 0, 1, 2, . . . , w as illustrated in figure 1(c).
For a layer j and a subset {x1, x2, . . . , xk} ⊆ {0, 1, 2, . . . , w − 1}, denote by
x1x2, . . . , xk the double-bond structure (or shortly, D-B structure) when the j th
layer has exactly k D-B, numbered by x1, x2, . . . , xk, respectively. With no loss of
generality, we always assume that x1 < x2 < · · · < xk. Arrange all the possible(
w

k

)
D-B structures in a suitable order, say the lexicographic order:

X1 = 012 · · · (k − 2)(k − 1), X2 = 012 · · · (k − 2)k,

X3 = 012 · · · (k − 2)(k + 1), . . . , X(w

k)
= (w − k)(w − k + 1) · · · (w − 1).

Consider the distribution of the double bonds in two neighboring, say the
pth and (p+1)th, layers. A D-B structure X′ in the pth (p ∈ {0, 1, 2, . . . , h−1})
layer is called a successor of the D-B structure X in the (p + 1)th layer if X′

may immediately follow X. For an example, let w = 5 and let the DB-structure
X = 134, then all the successors of X are 013, 023, 134 and 234 as illustrated in
figure 3. The following result is immediate.

Proposition 1. x ′
1x

′
2 · · · x ′

k is a successor of x1x2 · · · xk if and only if

1. When p + 1 is odd, xi � x ′
i � xi+1 − 1 for each i = 1, 2, . . . , k − 1, and

xk � x ′
k � w − 1 or

xi−1 � x ′
i � xi − 1 for each i = 2, . . . , k, and 0 � x ′

1 � x1 − 1;

2. When p + 1 is even, xi + 1 � x ′
i � xi+1 for each i = 1, 2, . . . , k − 1, and

xk + 1 � x ′
k � w − 1 or

xi−1 + 1 � x ′
i � xi for each i = 2, . . . , k, and 0 � x ′

1 � x1.
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Figure 3. The D-B structure 134 in the (p + 1)th layer and its successors.
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For a D-B structure X, let kh(C, X), or kh(X) if no confusion can occur,
be the number of Kekulé structures in the semi-capped tubule Th(C), when the
hth layer has D-B structure X. In particular, k1(C, X) is the number of Kekulé
structures in the cap C when the dangling bonds of C has the D-B structure X.

For a cap C, we may treat it as a graph including its w dangling bonds.
Consider the automorphism group Aut(C) of C. Two D-B structures x1x2 . . . xk

and x ′
1x

′
2 . . . x ′

k of the dangling bonds of C are called equivalent if there is a per-
mutation π on {1, 2, . . . , k} and an automorphism ρ ∈ Aut(C) such that

ρ(xπ(i)) = x ′
i , i = 1, 2, . . . , k.

In this way, the D-B structures of the dangling bonds of C with cardinality
k may be partitioned into some equivalence classes, say X 1, X2, . . . , Xs . For an
example, the equivalence classes of the D-B structures of C4 with cardinality 2
(see figure 2) are

X1 = {01, 12, 23, 34, 45, 05}, X2 = {02, 24, 04}, X3 = {03, 14, 25}, X4 = {13, 35, 15}.
From the above definition, one can see that if two D-B structures X and X′

are in the same equivalence class, then k1(X) = k1(X
′). It can be observed that

X1, X2, . . . , Xs , are also the equivalence classes of the D-B structures for each
odd layer of Th(C).

Choose an arbitrary representative D-B structure, say Xα(i) (α(i) ∈
{1, 2, . . . ,

(
w

k

)}), from each Xi , i = 1, 2, . . . , s, respectively. Define the
s-dimensional vector Vk

h(C) for odd h to be

Vk
h(C) = (kh(Xα(1)), kh(Xα(2)), . . . , kh(Xα(s))).

Taking the role of C by T2(C) and repeating the same discussion as
above, we get an equivalence classes, say Y1, Y2, . . . , Yt , for the D-B structures
with cardinality k of the second layer of T2(C). It can also be observed that
Y1, Y2, . . . , Yt , are the equivalence classes of the D-B structures for each even
layer of Th(C).

Similarly, choose an arbitrary representative D-B structure, say Xβ(i) (β(i) ∈
{1, 2, . . . ,

(
w

k

)}), from each Yi , i = 1, 2, . . . , t , respectively. Then Vk
h(C) for even

h is defined analogously to be the t-dimensional vector:

Vk
h(C) = (kh(Xβ(1)), kh(Xβ(2)), . . . , kh(Xβ(t))).

For two representative D-B structures Xα(i) and Xβ(i), Let Si and S ′
i be

the sets of all successors of Xα(i) and Xβ(i), respectively. With this notation and
recalling that if two D-B structures X and X′ are in the same equivalence class
then k1(X) = k1(X

′), when h is odd it can be seen that

kh(Xα(i)) =
∑

X∈Si

kh−1(X) =
t∑

j=1

∑

X∈Si∩Yj

kh−1(X) =
t∑

j=1

kh−1(Xβ(j)) · |Si ∩ Yj |.
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Similarly, when h is even, we have

kh(Xβ(i)) =
∑

X∈S ′
i

kh−1(X) =
s∑

j=1

∑

X∈S ′
i∩Xj

kh−1(X) =
s∑

j=1

kh−1(Xα(j)) · |S ′
i ∩ Xj |.

In terms of transfer matrix [12,13], the above discussion implies the follow-
ing result.

Proposition 2. Vk
h(C) could be expressed by the following recurrence relation

Vk
h(C) = Vk

h−1(C)Mk
h,

where the transfer matrix Mk
h is of order t × s if h is odd; or s × t if h is even.

Furthermore, the entry ti,j at the (i, j)-position of Mk
h equals

ti,j =
{ | Yi ∩ Sj |, when h is odd,

| Xi ∩ S ′
j |, when h is even.

The above proposition also indicates that Mk
l = Mk

h if l and h have the
same parity. So it would be convenient to rewrite Mk

h generally by Mk
e (resp.,

Mk
o ), when h is even (resp., odd). Thus,

Vk
h(C) =

{Vk
h−1M

k
o = Vk

h−2(M
k
e Mk

o ) = · · · = Vk
1 (Mk

e Mk
o )h−1/2, when h is odd,

Vk
h−1M

k
e =Vk

h−2(M
k
oMk

e )=· · · = Vk
2 (Mk

oMk
e )(h/2)−1, when h is even.

(1)

According to the connecting mode between Th(C) and the cap C ′, the D-B
structure X of Th(C) corresponds to a D-B structure, say X∗, of C ′. More pre-
cisely, let Th(C, C ′) be constructed from Th(C) and C ′ by identifying the dangling
bonds 0, 1, 2, . . . , w−1 of Th(C) with the dangling bonds q, q+1, q+2, . . . , q+
w−1 mod w of C ′, respectively and let X = x1x2 · · · xk. Then X∗ = (x1 +q)(x2 +
q) · · · (xk + q) mod w. Furthermore, we define

X ∗
i = {X∗ : X ∈ Xi}.

For a D-B structure X in the h-th layer of Th(C, C ′), let kh(C, C ′, X) denote
the number of the Kekulé structures in Th(C, C ′) in which the hth layer of Th(C)

has the D-B structure X. One can verify that

kh(C, C ′, X) = kh(C, X)k1(C
′, X∗).

Let

kh(C, C ′, Xi) =
∑

X∈Xi

kh(C, C ′, X).
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Let X1, X2, . . . , Xs and X ′
1, X ′

2, . . . , X ′
s ′ be the equivalence classes of the

hth layer of Th(C) and the dangling bonds of C ′, respectively. For any Xi ∈
{X1, X2, . . . , Xs}, define

Vk
1 (C ′)/Xi =

s ′∑

j=1

|X ′
j ∩ X ∗

i | · k1(C
′, X′

j ),

where X′
j is the representative D-B structure of X ′

j .
Recall that if two D-B structures X and X′ are in the same equivalence

class, then kp(C, X) = kp(C, X′) for any p ∈ {1, 2, . . . , h}. So we have

kh(C, C ′, Xi) =
∑

X∈Xi

kh(C, C ′, X) =
∑

X∈Xi

kh(C, X)k1(C
′, X∗)

= kh(C, Xi) ·
∑

X∈Xi

k1(C
′, X∗) = kh(C, Xi) ·




s ′∑

j=1

∑

X∈X ′
j ∩X ∗

i

k1(C
′, X)





= kh(C, Xi) · (

s ′∑

j=1

|X ′
j ∩ X ∗

i | · k1(C
′, X′

j )) = kh(C, Xi) · Vk
1 (C ′)/Xi ,

where Xi and X′
j are the representative D-B structures of Xi and X ′

j , respectively.
Let

Vk
1 (C ′)/Vk

h(C) = ( Vk
1 (C ′)/X1, Vk

1 (C ′)/X2, . . . , Vk
1 (C ′)/Xs ).

Then by (1), we have the following result.

Proposition 3. The number of Kekulé structures in Th(C, C ′) is

Kh(C, C ′) =
w∑

k=1

s∑

i=1

kh(C, C ′, Xi) =
w∑

k=1

s∑

i=1

kh(C, Xi) · Vk
1 (C ′)/Xi

=






w∑

k=1
Vk

1 (C)(Mk
e Mk

o )h−1/2(Vk
1 (C ′)/Vk

1 (C))T, when h is odd,

w∑

k=1
Vk

2 (C)(Mk
e Mk

o )(h/2)−1(Vk
1 (C ′)/Vk

2 (C))T, when h is even.

(2)

For some tubules, for examples, Th(Ci, Ci), i ∈ {1, 2, 3}, the odd layer and
the even layer may have the same equivalence classes partition and the same
transfer matrix, which implies that (2) could be simplified to be

Kh(C, C ′) =
w∑

k=1

Vk
1 (C)(Mk

e )h−1(Vk
1 (C ′)/Vk

1 (C))T. (3)
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If the number of vertices in the upper cap is odd (resp., even), then the term
for even (resp., odd) k in the summations (1), (2) and (3) will vanish.

Finally, consider the Boron-Nitride zigzag nanotube T = Th(C, C ′). Recall
that all the polygons on the caps of T are of even sides and therefore, all the
polygons on T are of even sides. So, in terms of graph theory, T is a bipartite
graph. Colour the vertices in the upper cap C by using two colors, say black
and red, such that any two adjacent vertices have distinct colors. Then it can
be observed that the end vertices of the dangling bonds of C must have the
same color. Since for any Kekulé structure M, each double bonds in M matches
exactly one black vertex and one red vertex, so the dangling bonds of C con-
tains exactly k = |r −b| double bonds which do not depend on the choice of M,
where b and r are the numbers of the black and red vertices, respectively. This
also implies that each layer of T contains exactly k = |r−b| double bonds. Thus,
the formula (2) would be simplified further to be

Kh(C, C ′) =
{Vk

1 (C)(Mk
e Mk

o )(h−1/2)(Vk
1 (C ′)/Vk

1 (C))T, when h is odd,

Vk
2 (C)(Mk

e Mk
o )(h/2)−1(Vk

1 (C ′)/Vk
2 (C))T, when h is even.

(4)

3. An algebraic formula

In this section, we will establish an other expression to the number of
Kekulé structures in which the characteristic polynomial of the transfer matrix
is involved. We firstly assume that h is odd. Let the characteristic polynomial of
the transfer matrix Mk

e Mk
o be

p(λ) = λs − d1λ
s−1 + d2λ

s−2 − · · · + (−1)sds, (5)

where the coefficient di (1 � i � s) is the sum of all main minors of order i in
the determinant det(Mk

e Mk
o ).

By (1), from a standard result on simultaneous relations, each entry kh(Xj )

of Vk
h(C) satisfies a common recurrence relation [13], i.e.

kh(Xj ) =
s∑

i=1

(−1)i+1dikh−2i(Xj ). (6)

Let ξ1, ξ2, · · · , ξp, |ξ1| � |ξ2| � · · · � |ξp|, be the roots of (5) (i.e., the
eigenvalues of the matrix Mk

e Mk
o ) with multiplicity m1, m2, . . . , mp, respectively.

Then by standard techniques in recursive relation (see [14] for details), we have

kh(Xj ) =
p∑

i=1

(a
j

i1h
mi−1 + a

j

i2h
mi−2 + · · · + a

j

imi
)ξ

h−1/2
i , (7)

where a
j

it , i = 1, 2, . . . , p; t = 1, 2, . . . , mp, are coefficient which could be deter-
mined by ki(Xj ), i = 1, 3, . . . , 2s − 1, and hence could be calculated from (1).
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Combining with (2), we get an other expression, by words of eigenvalue, to the
number Kh(C, C ′):

Kh(C, C ′)=
w∑

k=1

s∑

j=1

(

(Vk
1 (C ′)/Xj )

p∑

i=1

(a
j

i1h
mi−1 + a

j

i2h
mi−2 + · · · + a

j

imi
)ξ

(h−1/2)

i

)

.

(8)

Similarly, when h is even we have (the discussion is similar and is omitted)

Kh(C, C ′)=
w∑

k=1

t∑

j=1

(

(Vk
1 (C ′)/Yj )

p∑

i=1

(a
j

i1h
mi−1 + a

j

i2h
mi−2 + · · · + a

j

imi
)ξ

(h/2)−1
i

)

.

(9)

The above two algebraic formulae (8) and (9) also provide a way to view
the asymptotic behaviour to the number Kh(C, C ′) which indicates that, in gen-
eral, the number of Kekulé structures in capped zigzag nanotubes increase expo-
nentially with respect to the length h.

Theorem 1.

Kh(C, C ′) ∼ hm1−δξh/2, as h → +∞,

where ξ is the eigenvalue of greatest modulus among all the matrices Mk
e Mk

o (or
Mk

3 Mk
e ), k = 1, 2, . . . , w, satisfying

(1). Vk
1 (C ′)/Vk

1 (C) 	= (0, 0, . . . , 0) (or Vk
1 (C ′)/Vk

2 (C) 	= (0, 0, . . . , 0)); and

(2). δ = max{l : a
j

1l 	= 0, j = 1, 2, . . . , t (or s); l = 1, 2, . . . , m1}.

4. Examples

As applications of the previous two sections, in this section we will deduce
the value Kh(Ci, Cj ) for the caps illustrated in figure 2. To this end, we will work
mainly with Th(C1, C1) and give out the closed expression and numerical results
(for those of length up to 50) for all the tubules with the caps shown in figure 2.
With no loss of the generality, we always assume that the bond i, i = 1, 2, . . . , w,

in the first layer of the upper part is joined to the bond i in the dangling bonds
of the upper cap (for an example, see figures 1(c) and 2).

According to the relevant position of the two caps C1 and C1 at opposite
side ends of the tubule, there is essentially one kind of available structures for
Th(C1, C1). Since the number of vertices in C1 is odd, so the number k in the
summation (2) must be odd.
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Case 1. k = 1. The D-B structures in each layer has exactly one equivalence class
{0, 1, 2, 3, 4} and therefore the transfer matrix is the 1×1 matrix of all 1’s: M1

o =
M1

e = (1). By a direct calculating, we have V1
1 (C1) = (5) (the one-dimensional

row vector) and V1
1 (C1)/V1

1 (C1) = (25). So when k = 1, the total number of
Kekulé structures is (see (2))

V1
1 (C1) · (M1

e )h−1 · V1
1 (C1)/V1

1 (C1) = 5h+2.

Case 2. k = 3. In this case, by a direct observation, the equivalence classes of
D-B structures in the odd layer and the even layer are the same:

X1 = Y1 = {012, 123, 234, 034, 014}; X2 = Y2 = {013, 124, 023, 134, 024}.

Furthermore, it is easy to verify that M3
e = M3

o .
Choose 012 and 013 as the representative D-B structures of X1 and X2,

respectively. The set of all successors of 012 and 013 are S1 = {012, 013, 014} and
S2 = {013, 014, 023, 024}, respectively. So by Proposition 2, we have the transfer
matrix

M3
e = M3

o =
( |X1 ∩ S1| |X1 ∩ S2|

|X2 ∩ S1| |X2 ∩ S2|
)

=
(

2 1
1 3

)
.

It is easy to calculate that V3
1 (C1) = (k1(012), k1(013)) = (2, 1) and

V3
1 (C1)/V3

1 (C1) = (5 × 2, 5 × 1) = (10, 5).

So by (3), the total number of Kekulé structures with k = 3 is

V3
1 (C1) · (M3

e )h−1 · (V3
1 (C1)/V3

1 (C1))
T = (2, 1)

(
2 1
1 3

)h−1 (10
5

)
.

Case 3. k = 5. In this case, it can be seen easily that there is only one Kekulé
structure.

So by (3), the number of Kekulé structures in Th(C1, C1) is

Kh(C1, C1) = V1
1 (C1) · (M1

e )h−1 · (V1
1 (C1)/V1

1 (C1))
T + V3

1 (C1) · (M3
e )h−1

·(V3
1 (C1)/V3

1 (C1))
T + 1 = 5h+2 + (2, 1)

(
2 1
1 3

)h−1 (10
5

)
+ 1.

Our next step is to deduce the algebraic formula of the form (8) for Kh(C1, C1).

The characteristic polynomial of A =
(

2 1
1 3

)
is

P(λ, A) = λ2 − 5λ + 5 =
(

λ − 5 + √
5

2

)(

λ − 5 − √
5

2

)

.
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Table 1
The closed expressions of Kh(Ci, Ci), i = 1, 2, 3, 4.

tubule Kh(Ci, Ci)

Th(C1, C1) 1 + 5h+2 + (2, 1)

(
2 1
1 3

)h−1 (
10
5

)

= 1 + 5h+2 + 5 × ( 5
2 +

√
5

2 )h + 5 × ( 5
2 −

√
5

2 )h

Th(C2, C2) 1 + 2h+3 + (3, 4, 5)




2 2 2
2 4 4
1 2 3





h−1 


18
24
15



 +(2, 1, 0)




2 1 0
1 2 2
0 1 2





h−1 


12
6
0





= 2 + 2h+4 + ((112 + 64
√

3) × 2h−1 + 7 + 4
√

3)(2 + √
3)h−1

+((112 − 64
√

3) × 2h−1 + 7 − 4
√

3)(2 − √
3)h−1

Th(C3, C3) 1 + 7h+2 + (3, 2, 4, 3)







2 1 1 0
2 4 2 4
1 1 3 3
0 2 3 5







h−1 





21
28
28
21






+(2, 1, 0)




2 1 0
1 2 1
0 1 3





h−1 


14
7
0



 (the second expression is
too tedious and is omitted here)

Th(C4, C4)

(Type 1)
(4,8,8,6)






10 16 18 16
8 16 16 12
9 16 19 16
8 12 16 16






h−1
2





24
24
24
18




when h is odd

= 6 × 4h−1/2 + (291 + 168
√

3)(28 + 16
√

3)h−1/2 + (291 − 168
√

3)(28 − 16
√

3)h−1/2

(28, 52, 60, 32)






7 8 9 3
16 28 32 16
9 16 19 9
3 8 9 7






h
2 −1 




12
42
24
12




 when h is even

= (2172 + 1254
√

3)(28 + 16
√

3)h/2−1 + (2172 − 1254
√

3)(28 − 16
√

3)h/2−1

Th(C4, C4)

(Type 2)
(4,8,8,6)






10 16 18 16
8 16 16 12
9 16 19 16
8 12 16 16






h−1/2 




24
18
24
24




 when h is odd

= −6 × 4h−1/2 + (291 + 168
√

3)(28 + 16
√

3)h−1/2 + (291 − 168
√

3)(28 − 16
√

3)h−1/2

(The value is the same as that of Type 1 when h is even)

So for the D-B structure 012, we have

kh(012) = A1

(
5 + √

5
2

)h−1

+ A2

(
5 − √

5
2

)h−1

, (10)

where A1, A2 are coefficient, which could be determined by the initial condition
of kh(012). For example, from
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Table 2
The numerical results of Kh(Ci, Ci), i = 1, 2, 3, 4.

h kh(C1, C1) kh(C2, C2) kh(C3, C3) kh(C4, C4)(Type 1) kh(C4, C4)(Type 2)

1 151 272 673 588 576
2 701 1782 4901 4344 – the same as

Type 1, herein
3 3376 12740 38711 32448 after 32400
4 16501 93654 317864 242016 –
5 81251 694928 2675401 1806528 1806336
6 401876 5174118 22952189 13483392 –
7 1993751 38576900 200041031 100641792 100641024
8 9912501 287790246 1766636593 751197696 –
9 49359376 2147549072 1577299975× 10 5607017472 5607014400
10 246062501 1602752348× 10 1420811630×102 4185133670× 10 –
11 1227656251 1196236735×102 1288981957×103 3123826360×102 3123826237×102

12 6128671876 8928558289×102 1175975363×104 2331655692×103 –
13 3060859375×10 6664264589×103 1077601707×105 1740371504×104 1740371499×104

14 1529171875×102 4974236787×104 9908269470×105 1299030974×105 –
15 7641308594×102 3712806706×105 9134323628×106 9696099191×105 9696099189×105

16 3819007813×103 2771271364×106 8437762723×107 7237266962×106 –
17 1908908203×104 2068503133×107 7806270265×108 5401969602×107 5401969602×107

18 9542385742×104 1543951022×108 7230457585×109 4032085003×108 –
19 4770413086×105 1152420457×109 6703039330×1010 3009589219×109 3009589219×109

20 2384924414×106 8601782366×109 6218252628×1011 2246387975×1010 –
21 1192360132×107 6420457382×1010 5771447007×1012 1676726811×1011 1676726811×1011

22 5961431348×107 4792294489×1011 5358794074×1013 1251525930×1012 –
23 2980582056×108 3577017250×1012 4977081237×1014 9341516714×1012 9341516714×1012

24 1490242684×109 2669922004×1013 4623564470×1015 6972602999×1013 –
25 7451038513×109 1992856906×1014 4295862613×1016 5204421731×1014 5204421731×1014

26 3725455974×1010 1487488643×1015 3991880926×1017 3884633265×1015 –
27 1862705091×1011 1110276637×1016 3709755288×1018 2899529743×1016 2899529743×1016

28 9313442618×1011 8287217635×1016 3447811027×1019 2164238463×1017 –
29 4656691338×1012 6185663452×1017 3204532118×1020 1615409581×1018 1615409581×1018

30 2328334826×1013 4617042056×1018 2978537796×1021 1205758126×1019 –
31 1164163490×1014 3446207107×1019 2768564474×1022 8999901178×1019 8999901178×1019

32 5820803253×1014 2572284003×1020 2573451508×1023 6717617692×1020 –
33 2910396491×1015 1919978918×1021 2392129754×1024 5014098106×1021 5014098106×1021

34 1455196387×1016 1433091774×1022 2223612193×1025 3742573778×1022 –
35 7275975214×1016 1069674263×1023 2066986098×1026 2793495098×1023 2793495098×1023

36 3637985175×1017 7984157392×1023 1921406359×1027 2085093127×1024 –
37 1818991707×1018 5959456209×1024 1786089718×1028 1556334698×1025 1556334698×1025

38 9094955353×1018 4448198671×1025 1660309713×1029 1161664033×1026 –
39 4547476525×1019 3320180689×1026 1543392181×1030 8670778385×1026 8670778385×1026

40 2273737846×1020 2478216604×1027 1434711233×1031 6471957096×1027 –
41 1136868772×1021 1849766056×1028 1333685614×1032 4830734541×1028 4830734541×1028

42 5684343314×1021 1380684180×1029 1239775389×1033 3605709349×1029 –
43 2842171460×1022 1030556702×1030 1152478915×1034 2691338098×1030 2691338098×1030

44 1421085659×1023 7692179944×1030 1071330065×1035 2008842104×1031 –
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Table 2(Continued)

h kh(C1, C1) kh(C2, C2) kh(C3, C3) kh(C4, C4)(Type 1) kh(C4, C4)(Type 2)

45 7105428034×1023 5741521275×1031 9958956683×1035 1499420159×1032 1499420159×1032

46 3552713924×1024 4285529822×1032 9257731460×1036 1119182443×1033 –
47 1776356928×1025 3198763007×1033 8605883332×1037 8353691483×1033 8353691483×1033

48 8881784517×1025 2387589212×1034 7999934557×1038 6235280209×1034 –
49 4440892214×1026 1782120850×1035 7436652590×1039 4654076508×1035 4654076508×1035

50 2220446091×1027 1330193111×1036 6913032717×1040 3473849998×1036 –

V3
h(C1) = V3

1 (C1) · (M3
e )h−1 = (2, 1)

(
2 1
1 3

)h−1

,

we have k1(012) = 2, k2(012) = 5 and therefore, A1 = A2 = 1. This means that

kh(012) =
(

5 + √
5

2

)h−1

+
(

5 − √
5

2

)h−1

.

Similarly, we have

kh(013) =
(

1
2

+
√

5
2

)(
5 + √

5
2

)h−1

+
(

1
2

−
√

5
2

)(
5 − √

5
2

)h−1

.

Therefore, by (8), the number of Kekulé structures in Th(C1, C1) is

Kh(C1, C1) = 1 + 5h+2 + 10kh(012) + 5kh(013)

= 1 + 5h+2 + 5 ×
(

5
2

+
√

5
2

)h

+ 5 ×
(

5
2

−
√

5
2

)h

To end the paper, the closed expressions of Kh(C, C) for the caps shown
in figure 2 are shown in table 1 and the relevant numerical results for those of
length up to 50 are listed in table 2.

For Th(C2, C2) and Th(C3, C3), there are essentially one kind of available
structures, respectively. For Th(C4, C4), there are essentially two different kinds
of available structures, namely Type 1 and Type 2: In Type 1, the dangling bond
i, i = 0, 1, 2, 3, 4, 5, of the lower cap C4 is joined to the bond i in the hth layer
of the semi-tubule Th(C4); in Type 2, the dangling bond i, i = 0, 1, 2, 3, 4, 5, of
the lower cap C4 is joined to bond i + 1 (mod 6) in the hth layer of the tubule.
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